Schattenblick → INFOPOOL → NATURWISSENSCHAFTEN → TECHNIK


WERKSTOFFE/946: Oberflächenchemie führt zu neuen Produkten (idw)


Universität Basel - 13.09.2016

Oberflächenchemie führt zu neuen Produkten


Chemische Reaktionen auf Oberflächen können zu neuen chemischen Verbindungen führen, die bisher in Lösung nicht synthetisiert wurden. Die Ausgangs-, Zwischen- und Endprodukte lassen sich dabei mithilfe eines hochauflösenden Rasterkraftmikroskops genau analysieren. Dies zeigen Wissenschaftler des Swiss Nanoscience Institute und des Departements Physik der Universität Basel zusammen mit Kollegen aus Japan und Finnland in der Fachzeitschrift «Nature Communications».

Bei zahlreichen nanotechnologischen Anwendungen werden einzelne Moleküle auf Oberflächen platziert, damit sie bestimmte Funktionen erfüllen - beispielsweise elektrischen Strom zu leiten oder ein Lichtsignal auszusenden. Im Idealfall synthetisieren die Wissenschaftler diese teilweise recht komplexen chemischen Verbindungen direkt auf der Oberfläche. Mithilfe von ultrahochauflösenden Rasterkraftmikroskopen lassen sich die chemischen Reaktionen auf der Oberfläche Schritt für Schritt verfolgen. Die erhaltenen Daten erlauben zudem die Berechnung der genauen molekularen Struktur und der Energetik der Reaktionsschritte.

Mitarbeiter von Prof. Ernst Meyer von der Universität Basel haben für ihre Untersuchungen ein Molekül gewählt, das aus drei Benzolringen besteht, die über eine Dreifachbindung verbunden sind. Bringen die Forscher dieses Molekül auf eine Silberoberfläche auf, ordnen sich die Moleküle selbst zu einem gleichmässigen Muster an - es kommt jedoch nicht zu einer chemischen Reaktion.

Kupfer als Katalysator

Auf einer Kupferoberfläche dagegen reagieren die Moleküle bereits bei einer Temperatur von -123 °C. Katalysiert durch die Kupferatome, nimmt das Ausgangsmolekül zwei Wasserstoffatome auf und verändert seine Struktur und räumliche Anordnung. Wird die Probe auf 200 °C erwärmt, erfolgt ein weiterer Reaktionsschritt, bei dem es zur Ausbildung von zwei Fünferringen kommt. Eine weitere Temperaturerhöhung auf 400 °C bewirkt die Abspaltung von Wasserstoffatomen und die Ausbildung einer weiteren Kohlenstoff-Kohlenstoff-Bindung. Die beiden letzten Reaktionsschritte führen zu aromatischen Kohlenwasserstoffverbindungen, die bisher in Lösung nicht synthetisiert worden waren.

Die Forscher führten diese Untersuchungen im Ultrahochvakuum durch und konnten die Synthese mithilfe eines hochauflösenden Rasterkraftmikroskops mit einer Kohlenstoffmonoxid-Spitze verfolgen. Die vergleichenden Computerberechnungen führten zur genauen molekularen Struktur, die bestens mit den mikroskopischen Aufnahmen übereinstimmt.

Nanostrukturen nach Mass

Mit seinen Untersuchungen hat das internationale Forschungsteam gezeigt, dass Oberflächenchemie zu neuen Produkten führen kann. «Diese äusserst reine Form der Chemie liefert uns massgeschneiderte Nanostrukturen auf Oberflächen, die vielfältig eingesetzt werden können», kommentiert Meyer die Arbeiten, die massgeblich von Dr. Shigeki Kawai durchgeführt wurden. In dem vorgestellten Beispiel fungiert die Kupferoberfläche als Katalysator; die chemische Reaktion der Ausgangsmoleküle wird durch Wärmezufuhr gesteuert und lässt sich mittels Rasterkraftmikroskopie verfolgen.


Orginalbeitrag

Shigeki Kawai, Ville Haapasilta, Benjamin D. Lindner, Kazukuni Tahara, Peter Spijker, Jeroen A. Buitendijk, Rémy Pawlak, Tobias Meier, Yoshito Tobe, Adam S. Foster, and Ernst Meyer
Thermal control of a sequential on-surface transformation of a hydrocarbon molecule on copper surface
Nature Communications (2016), doi: 10.1038/ncomms12711

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/de/institution74

*

Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Universität Basel, Reto Caluori, 13.09.2016
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 15. September 2016

Zur Tagesausgabe / Zum Seitenanfang