Schattenblick → INFOPOOL → NATURWISSENSCHAFTEN → PHYSIK


MELDUNG/669: Fundamentales Festkörper-Phänomen enträtselt (idw)


Goethe-Universität Frankfurt am Main - 08.12.2016

Fundamentales Festkörper-Phänomen enträtselt


Ob Wasser zu Eis gefriert, Eisen entmagnetisiert oder ein Material supraleitend wird - für Physiker steckt dahinter immer ein Phasenübergang. Diese unterschiedlichen Phänomene versuchen sie zu verstehen, indem sie nach universellen Eigenschaften suchen. Forscher der Goethe-Universität und der Technischen Universität Dresden haben nun eine wegweisende Entdeckung bei einem Phasenübergang gemacht, der von einem elektrischen Leiter zum Isolator führt (Mott Metall-Isolator-Übergang).


Grafik: © Ulrich Tutsch

Die gegenseitige Abstoßung der Elektronen sorgt dafür, dass sie engen Kontakt vermeiden. Dies behindert den Elektronenfluss, und das System kann zu einem Isolator werden.
Grafik: © Ulrich Tutsch

FRANKFURT. Nach der Vorhersage von Sir Nevill Francis Mott im Jahr 1937 kann die gegenseitige Abstoßung der gleichnamig geladenen Elektronen, die für den Stromtransport verantwortlich sind, einen Metall-Isolator-Übergang verursachen. Doch entgegen der gängigen Lehrbuchmeinung, wonach der Phasenübergang allein durch die Elektronen bestimmt wird, ist die Wechselwirkung der Elektronen mit dem Atomgitter des Festkörpers entscheidend. Das berichten die Forscher in der aktuellen Ausgabe der Fachzeitschrift "Science Advances".

Der Arbeitsgruppe von Prof. Michael Lang vom Physikalischen Institut der Goethe-Universität gelang die Entdeckung mithilfe einer selbst entwickelten, weltweit einzigartigen Technik. Sie ermöglicht es, Längenänderungen eines Materials bei tiefen Temperaturen unter variablem äußerem Druck mit extrem hoher Auflösung zu vermessen. So konnte erstmals experimentell nachgewiesen werden, dass neben den Elektronen auch das Atomgitter - das Gerüst des Festkörpers - an diesem Phasenübergang maßgeblich beteiligt ist.

"Diese experimentelle Ergebnisse werden einen Paradigmenwechsel beim Verständnis eines der zentralen Phänomene aktueller Festkörperforschung einleiten", urteilt Prof. Lang. Der Mott Metall-Isolator Übergang wird nämlich mit außergewöhnlichen Phänomenen wie der Hochtemperatursupraleitung in Kupferoxid-basierten Materialien in Verbindung gebracht. Diese bieten ein enormes technisches Potenzial für zukünftige Anwendungen.

Die theoretische Analyse der experimentellen Befunde beruht auf der grundlegenden Erkenntnis, dass die vielen Teilchen eines Systems in der Nähe eines Phasenübergangs nicht nur mit ihren unmittelbaren Nachbarn wechselwirken, sondern über große Abstände hinweg mit allen Teilchen "kommunizieren". Dadurch spielen nur noch übergeordnete Aspekte wie die Symmetrie des Systems eine Rolle. Die Identifizierung solcher universeller Eigenschaften stellt daher den Schlüssel zum Verständnis von Phasenübergängen dar.

"Die aktuellen Erkenntnisse eröffnen einen neuen Blick auf den Mott Metall-Isolator Übergang und erlauben eine verfeinerte theoretische Modellierung des Phasenübergangs", erklärt Privatdozent Dr. Markus Garst vom Institut für Theoretische Physik der Technischen Universität Dresden.

Die Forschungsarbeit wurde von der Deutschen Forschungsgemeinschaft im Rahmen des Transregio-Sonderforschungsbereichs "Condensed Matter Systems with Variable Many-Body Interactions" unter Leitung von Prof. Michael Lang gefördert.


Publikation:
Elena Gati, Markus Garst, Rudra S. Manna, Ulrich Tutsch, Bernd Wolf, Lorenz Bartosch, Harald Schubert, Takahiko Sasaki, John A. Schlueter, and Michael Lang, Breakdown of Hooke's law of elasticity at the Mott critical endpoint in an organic conductor, Science Advances 2, e1601646 (2016).

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/de/institution131

*

Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Goethe-Universität Frankfurt am Main, Dr. Anne Hardy, 08.12.2016
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 10. Dezember 2016

Zur Tagesausgabe / Zum Seitenanfang