Schattenblick → INFOPOOL → NATURWISSENSCHAFTEN → PHYSIK


FORSCHUNG/1421: Ein Elektronenkäfig aus Schallwellen (idw)


Max-Planck-Institut für Quantenoptik - 14.11.2017

Ein Elektronenkäfig aus Schallwellen


Internationales Wissenschaftlerteam entwickelt neues Konzept, Elektronen mit Hilfe von Schallwellen einzufangen zu manipulieren.

Ausschlaggebend für die Eigenschaften moderner, technologisch relevanter Materialien ist das korrelierte Verhalten der Elektronen in ihrem Innern. Ein besseres Verständnis davon ist nur möglich, wenn es gelingt, diese Teilchen kontrolliert einzufangen, entweder einzeln und isoliert, oder als Vielteilchensystem in einer Festkörperumgebung. Wegen ihrer - im Vergleich zu Atomen - extrem kleinen Masse sind die punktförmigen Teilchen aber sehr flink und wendig und lassen sich deshalb nur schwer an einem Ort festhalten. Nun hat ein internationales Wissenschaftlerteam um Prof. Ignacio Cirac (Max-Planck-Institut für Quantenoptik, Garching), und Prof. Mikhail Lukin (Harvard Universität, USA) eine neue Methode ausgearbeitet, eine Art "Käfig" für Elektronen zu bauen (Physical Review X 7, 24. Oktober 2017). Danach erzeugen Schallwellen auf piezoelektrischen Oberflächen elektrische Potentiale, mit deren Hilfe Elektronen verschoben oder auch eingefangen werden können. Mit stehenden Schallwellen lassen sich darüber hinaus Gitterstrukturen ähnlich denen von optischen Gittern für neutrale Atome erzeugen.

Zum einen liefert die Arbeit einen allgemeinen theoretischen Rahmen sowie Richtlinien für eine experimentelle Realisierung des Konzepts. Zum andern untersuchen die Wissenschaftler im Detail die Eignung bestimmter, aus Schichten aufgebauter Halbleiterstrukturen als experimentelle Plattform. Der vorgeschlagene Aufbau ist von fundamentalem Interesse für die kontrollierte Untersuchung von in Festkörpersystemen auftretenden Quasiteilchen. Er stellt aber auch eine neue Möglichkeit für die Quantensimulation von Festkörper-Vielteilchensystemen dar mit der Aussicht, in bislang unbekannte Parameterbereiche vorzustoßen, dank der extrem kleinen Teilchenmassen, der systemeigenen Elektron-Phonon-Kühlung und den starken Wechselwirkungen zwischen den Teilchen.

Basiselement in diesem Konzept ist eine aus verschiedenen Schichten gebildete Festkörperstruktur: auf einem Substrat ist zunächst ein dünner, praktisch zweidimensionaler Film aus einem halbleitenden Material, z.B. Galliumarsenid, aufgetragen. Darauf befindet sich eine Schicht aus einem piezoelektrischen Material, auf dessen Oberfläche zwei "Interdigital Transducer" (IDT) aufgeprägt sind. Die aus jeweils zwei dünnen Filmelektroden bestehenden IDTs erzeugen entgegen gesetzt laufende Oberflächenwellen. Diese "surface acoustic waves" (SAWs) rufen ein zeitabhängiges periodisches elektrisches Potential hervor, das wiederum auf die in dem dünnen Halbleiterfilm gefangenen Elektronen wirkt. Die Tiefe und der Gitterabstand des Potentials werden durch die an den IDTs angelegte Spannung gesteuert.

SAWs wurden bereits erfolgreich eingesetzt, um die Position einzelner Elektronen zu verändern, oder um Elektronen die wenigen Nanosekunden lang festzuhalten, während der sich die Schallwellen auf der Oberfläche ausbreiten. Der neue Ansatz schlägt jedoch ein "quasi-stationäres" Fallenpotential vor. "Wenn die Frequenz der Schallwellen hoch genug ist, können die Elektronen der schnell oszillierenden Kraft nicht mehr folgen", erklärt Johannes Knörzer, Doktorand in der Abteilung Theorie von Prof. Cirac am MPQ. "Die Potentiallandschaft kann dann als ein effektiv zeitunabhängiges Pseudogitter beschrieben werden, das die Elektronen in der Nähe eines lokalen Minimums festhält."

Ein Schwerpunkt der Arbeit ist die detaillierte Beschreibung der Bedingungen, unter denen einzelne Teilchen in von Schallwellen erzeugten elektrischen Potentialen dynamisch eingefangen und gekühlt werden können. "Die Rechnungen implizieren z.B., dass sehr tiefe Temperaturen erforderlich sind. In gewisser Weise erinnert die theoretische Behandlung des Systems an die von Ionen-Fallen", erläutert Johannes Knörzer. Der andere Schwerpunkt ist die Simulation von Quanten-Vielteilchensystemen durch ein System aus Elektronen in einem akustischen Gitter. "Die Dynamik von Elektronen in einem akustischen Gitter hat große Ähnlichkeit mit dem Verhalten von fermionischen ultrakalten Atomen in optischen Gittern; beides wird vom Fermi-Hubbard Modell erfasst", fügt Knörzer hinzu.

Das Team analysiert die Machbarkeit des Konzepts für unterschiedliche Heterostrukturen, in denen sich hochfrequente Schallwellen schnell ausbreiten können. Die Überlegungen gelten nicht nur für Elektronen, sondern auch für sogenannte Quasiteilchen wie Exzitonen oder Löcher, die in modernen Materialien auftreten. "Wir haben den starken Wunsch, ein tieferes Verständnis von den Eigenschaften und Wechselwirkungen dieser Teilchen zu gewinnen. Das ist unsere Motivation, einen Kontrollmechanismus zu finden, der die Allgemeinheit und Flexibilität der optischen Gitter auf Festkörpersysteme überträgt", resümiert Prof. Ignacio Cirac. "Unser höchstes Ziel ist es, das Verhalten korrelierter Elektronen in technologisch relevanten Materialien und Molekülen zu verstehen. Das würde den Weg ebnen, einen universellen Quantensimulator zu bauen." Olivia Meyer-Streng


Originalveröffentlichung:
M. J. A. Schuetz, J. Knörzer, G. Giedke, L. M. K. Vandersypen, M. D. Lukin, and J. Ignacio Cirac
Acoustic Traps and Lattices for Electrons in Semiconductors
Physical Review X 7, 041019 (2017), DOI: 10.1103/PhysRevX.7.041019

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/de/institution1011

*

Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Max-Planck-Institut für Quantenoptik, Dr. Olivia Meyer-Streng, 14.11.2017
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 16. November 2017

Zur Tagesausgabe / Zum Seitenanfang