Schattenblick →INFOPOOL →MEDIZIN → FAKTEN

MELDUNG/639: Nachrichten aus Forschung und Lehre vom 11.12.12 (idw)


Informationsdienst Wissenschaft - idw - Pressemitteilungen

→  Neue Krebsmedikamente für die Behandlung metastasierender Tumore
      Stuttgart und Oncomatrix starten Forschungskooperation
→  TRMreport_03: "iPS-Zellen sind ein phantastisches Werkzeug"



Universität Stuttgart - 10.12.2012

Uni Stuttgart und Oncomatrix starten Forschungskooperation

Neue Krebsmedikamente für die Behandlung metastasierender Tumore

Das spanische Biopharmazeutik-Unternehmen Oncomatrix und die Universität Stuttgart haben einen Forschungskooperationsvertrag abgeschlossen, um neue Immuntherapeutika mit spezifischer, tumorgerichteter Aktivität zu entwickeln, die minimale Nebenwirkungen auf gesundes Gewebe aufweisen sollen. Die im Baskenland ansässige Firma entwickelt Konzepte und neue Medikamente für die Therapie metastasierender Tumoren, mit Schwerpunkt auf Brust-, Blasen- und Bauchspeicheldrüsenkrebs. An der Universität Stuttgart wird die Forschungskooperation vom Institut für Zellbiologie und Immunologie der Universität Stuttgart mit seinen Abteilungen Biomedical Engineering (Prof. Roland Kontermann) und Zellbiologie (Prof. Klaus Pfizenmaier) durchgeführt.

Die Zusammenarbeit beinhaltet die gentechnische Entwicklung von hoch wirksamen Immuntherapeutika, die spezifisch die umgebenden Gewebezellen von bösartigen Krebszellen ansteuern und dort ihre zytotoxische Wirkung entfalten. Diese nicht-tumorösen Gewebezellen bilden das so genannte Tumorstroma. Sie fördern durch Botenstoffe oder Oberflächenmoleküle das Tumorwachstum und die Bildung von Tochtergeschwülsten. Das Tumorstroma entwickelt sich parallel mit den eigentlichen Krebszellen und kann, je nach Tumor und Stadium der Erkrankung, bis zu 90 Prozent der Tumormasse eines Karzinoms ausmachen. Mit den zu entwickelnden Immuntherapeutika soll somit indirekt das Tumorwachstum gehemmt und insbesondere die Metastasierung von Tumorzellen verhindert werden. Der Ansatz besteht darin, einen spezifischen Antikörper mit einem toxischen Molekül fest zu verknüpfen - ein sogenanntes Immunkonjugat. Im ersten Schritt werden die Kooperationspartner geeignete Obeflächenmoleküle der nicht-tumorösen Bindegewebs- oder Tumorgefäßzellen auswählen, die nur von diesen, aber nicht von Gewebezellen außerhalb des Tumorstromas gebildet werden. Die zweite Herausforderung besteht darin, einen humanen oder humanisierten Antikörper zu produzieren, der diese Zielstrukturen auf den Zellen des Tumorstromas spezifisch erkennt und die Aufnahme des Immunkonjugats in die Zielzelle bewirkt, wo dieses seine hochzytotoxische Wirkung entfalten kann.

Oncomatrix geht mit dem Stroma-spezifischen Immuntoxin-Konzept einen neuen Weg in der Krebstherapie mit dem letztendlichen Ziel, eine neue Generation zielgerichteter Therapeutika zu entwickeln, die für eine Vielzahl solider Tumore Anwendung finden kann, aber besonders bei stark metastasierenden Krebsarten vorteilhaft gegenüber Standardtherapien sein könnte.

Ansprechpartner:
Prof. Dr. Klaus Pfizenmaier
Universität Stuttgart
Institut für Zellbiologie und Immunologie
E-Mail: klaus.pfizenmaier (at)
izi.uni-stuttgart.de

Zu dieser Mitteilung finden Sie Bilder unter:
http://idw-online.de/de/image189919
Struktur eines Immunotoxins. Die grünen Bereiche zeigen das toxische Prinzip, die blauen und roten den Antikörper.

Über Oncomatrix
Oncomatrix, lokalisiert im Biskaia Technologiepark in Derio, Spanien, entwickelt neue Biopharmazeutika für die Behandlung invasiver Formen des Brust-, Pankreas- und Blasenkarzinoms. Der Schwerpunkt liegt auf dem Gebiet des Tumorstroma-Targetings und zytotoxischer Effektormoleküle, auf dem Oncomatrix wissenschaftliche Erkenntnisse und Schutzrechte erworben hat.
Oncomatrix hat für die Entwicklung dieser neuen Protein-Therapeutika strategische und operative Allianzen mit international ausgewiesenen Universitäten, Forschungseinrichtungen und Kliniken in USA und Europa geschlossen, unter anderem mit National Jewish Health, Case Western Reserve University, Hospital Universitario Marqués de Valdecilla, Hospital Central de Asturias und der Universität Stuttgart.
www.oncomatrix.es

Über die Universität Stuttgart
Die Universität Stuttgart pflegt ein interdisziplinäres Profil mit Schwerpunkten in den Natur- und Ingenieurwissenschaften. Gegründet 1829, hat sich die frühere Technische Hochschule zu einer weltweit nachgefragten Ausbildungs- und Forschungsstätte mit heute 24.600 Studierenden und 5.000 Mitarbeitern entwickelt. Ihre herausragende Stellung spiegelt sich unter anderem in dem Exzellenzcluster "Simulation Technology" (SimTech) und der Graduiertenschule "Advanced Manufacturing Engineering" (GSaME) sowie in zahlreichen Sonderforschungsbereichen, Schwerpunktprojekten und Graduiertenkollegs. Die Forschungsaktivitäten konzentrieren sich auf die Bereiche Modellierung und Simulationstechnologien, Neue Materialien, Komplexe Systeme und Kommunikation, Technologiekonzepte und Technologiebewertung, Nachhaltige Energieversorgung und Umwelt, Mobilität, Integrierte Produkt- und Produktionsgestaltung, die Gestaltung und Technologie nachhaltiger Lebensräume sowie im Bereich der Lebenswissenschaften auf die Biotechnologie und Systembiologie.

Über das IZI
Das Institut für Zellbiologie und Immunologie (IZI, Direktor: Prof. K. Pfizenmaier) der Universität Stuttgart hat mit seinen vier Abteilungen für Zellbiologie, Molekulare Immunologie, Biomedical Engineering und Molekulare Tumorzellbiologie seinen Forschungsschwerpunkt im Bereich der Grundlagenforschung auf Gebieten der Signaltransduktion und der molekularen Mechanismen von Zell- und Gewebshomöostase sowie deren pathogenetischer Veränderungen bei Krebs- und immunologischen Erkrankungen. Angewandte Forschung wird vor allem im Bereich der pharmazeutischen Biotechnologie durchgeführt. Die Abteilung Biomedical Engineering von Prof. Kontermann besitzt große Expertise im Antikörper Engineering mit einem Fokus auf der Entwicklung Antikörper-basierter zielgerichteter Therapeutika ("targeted therapy). Gemeinsam mit einer Arbeitsgruppe von Prof. Pfizenmaier werden neue proapoptotische und immunmodulierende Fusionsproteine auf Basis von Liganden der TNF Zytokinfamilie entwickelt. In Zusammenarbeit mit Unternehmen der pharmazeutischen Industrie steht bereits ein von Institut entwickeltes Therapeutikum vor der klinischen Prüfung. Die erfolgreichen Forschungsarbeiten des Instituts auf diesen Gebieten sind durch zahlreiche Publikationen in internationalen Fachzeitschriften, durch Patente und Patentanmeldungen dokumentiert.

Kontaktdaten zum Absender der Pressemitteilung stehen unter:
http://idw-online.de/de/institution80

Quelle: Universität Stuttgart, Andrea Mayer-Grenu, 10.12.2012

Raute

Translational Centre for Regenerative Medicine (TRM) Leipzig - 10.12.2012

TRMreport_03: "iPS-Zellen sind ein phantastisches Werkzeug"

Dritte Reportage aus dem Translationszentrum für Regenerative Medizin Leipzig: Regenerative Forschung ohne iPS-Zellen ist nahezu undenkbar. Das Kürzel bezeichnet induzierte pluripotente Stammzellen. Diese entstehen, wenn ausgereifte Körperzellen reprogrammiert werden. Erstmals gelungen ist dieser Prozess dem japanischen Arzt und Forscher Shin'ya Yamanaka 2006. Im Dezember 2012 nun wird Yamanaka der Nobelpreis für Medizin zuerkannt. Es ist eine Auszeichnung für die Grundlagenforschung. Dieser hat sich auch das Translationszentrum für Regenerative Medizin Leipzig verschrieben: Hier wird das medizinische Potenzial von iPS-Zellen im Kontext von Diabetes und Alzheimer erforscht.

"Induzierte pluripotente Stammzellen sind ein phantastisches Werkzeug." Wenn Prof. Ulrich Sack über iPS-Zellen und regenerative Forschung spricht, dann steht für ihn der wissenschaftliche Nutzen im Vordergrund. Die therapeutische Perspektive sieht er ebenso, beurteilt diese jedoch mit einer gewissen Vorsicht. "Dafür wissen wir einfach noch zu wenig." Mehr zu lernen über den pluripotenten Charakter von Stammzellen, über die Differenzierung von Zellen, über die regulatorischen Mechanismen bei der Ausbildung unterschiedlicher Zelltypen - all dies grundlegend zu studieren, ohne auf embryonale Stammzellen zugreifen zu müssen, das ist aus Sicht des Direktors für Forschung am Translationszentrum für Regenerative Medizin (TRM) Leipzig der erste Vorzug von iPS-Zellen. Es ist gerade sechs Jahre her, dass Shin'ya Yamanaka und sein Team an der Universität Kyoto den iPS-Zellen auf die Spur kamen. Seither ist die Methode vereinfacht worden - und iPS-Zellen sind in der Stammzellforschung als entscheidende Alternative zu embryonalen Stammzellen anerkannt. "Auch wenn es Unterschiede zwischen induzierten pluripotenten und embryonalen Stammzellen gibt, für die Untersuchung der Genotoxizität von Wirkstoffen, der Wirkungen und Nebenwirkungen von Medikamenten, für die Pharmaforschung generell, werden iPS-Zellen zunehmend wichtiger", skizziert Prof. Sack den zweiten Vorzug der landläufig als "Alleskönner-Zellen" bezeichneten iPS-Zellen.

Doch "Alleskönner", die in naher Zukunft gleichermaßen große Volkskrankheiten wie seltene Erbkrankheiten heilen, das sind iPS-Zellen nicht. Darin stimmt der Forschungsdirektor mit Dr. Insa Schroeder und Dr. Alexandra Stolzing überein. Die Wissenschaftlerinnen leiten am TRM Leipzig Forschungsvorhaben zu induzierten pluripotenten Stammzellen. Mit Diabetes mellitus und Morbus Alzheimer sind die Projekte auf Erkrankungen gerichtet, die unzählige Patienten treffen und enorme Gesundheitskosten verursachen. Auch wenn sich Diabetes mittels Insulin behandeln und Alzheimer medikamentös verzögern lässt, Heilung im Sinne der Wiederherstellung der geschädigten oder zerstörten Zellen in der Bauchspeicheldrüse bzw. im Gehirn ist derzeit nicht absehbar. An diesem Punkt setzt regenerative Forschung an: Sie zielt auf den Ersatz verlorener Zellen in ihrer vollen Funktionalität und an ihrem angestammten Ort. Dr. Insa Schroeder forscht zur Bauchspeicheldrüse. Im speziellen hat sie sich der Betazelle zugewandt, jener Zelle, die im menschlichen Organismus Insulin produziert und speichert. Auf zwei Feldern ist sie in den vier Jahren seit 2009 am TRM Leipzig vorangekommen: Zum einen bei der Etablierung eines Modells zur Reprogrammierung von iPS-Zellen aus patientenspezifischen Keratinozyten. Zum anderen bei der Verbesserung der Differenzierung von embryonalen Stammzellen (ES) zu insulinproduzierenden Betazellen mittels microRNA. Neben der speziellen Eignung von iPS-Zellen für derartige In-vitro-Testverfahren, rückt die Methode sukzessive als Zellersatztherapie in den Fokus. Dafür steht das Projekt von Dr. Alexandra Stolzing, Leiterin der TRM-Forschungsgruppe "Alzheimer-Therapie". Das Konzept setzt bei den Mikrogliazellen an. Das sind Immunzellen des Zentralen Nervensystems, die mit zunehmendem Alter an Funktionalität verlieren und beispielsweise die Alzheimer-typischen Protein-Ablagerungen nicht mehr abbauen können. Die Reprogrammierung von Hautzellen und deren Differenzierung in Mikrogliazellen sind bereits gelungen; im Maus-Modell zeigte sich nach der Transplantation, dass die Protein-Plaques im Gehirn vergleichsweise zügig abgebaut waren. Im nächsten Schritt werden diese Erkenntnisse auf das Großtiermodell übertragen.

Leipzig ist ein absoluter Schwerpunkt der Biomedizin und der regenerativen Medizin; an stammzellbezogenen Themen arbeiten zahlreiche Gruppen der Universität Leipzig, bei Fraunhofer und Helmholtz, in der BioCity, am Universitätsklinikum, am Herzzentrum und eben auch am Translationszentrum für Regenerative Medizin. "Leipzig und Biotechnologie" - dass dieses Wortpaar eines Tages den selben wertvollen Klang hat wie "Jena und Optik", darauf setzen Ulrich Sack, Insa Schroeder und Alexandra Stolzing.

Autorin: Daniela Weber (TRM)

Link
Der vollständige TRMreport_03 ist zu finden unter:
http://www.trm.uni-leipzig.de/de/press/trmreport/r-press-a-438.html

Kontakt

Dr. Ulrich Sack
Translationszentrum für Regenerative Medizin
Universität Leipzig
Philipp-Rosenthal-Straße 55, 04103 Leipzig
E-Mail: research@trm.uni-leipzig.de

Dr. Insa Schroeder
Martin-Luther-Universität Halle-Wittenberg
Institut für Anatomie und Zellbiologie
Große Steinstr. 52, 06097 Halle (Saale)
E-Mail: insa.schroeder@trm.uni-leipzig.de

Dr. Alexandra Stolzing
Fraunhofer-Institut für Zelltherapie und Immunologie
Perlickstr. 1, 04103 Leipzig
E-Mail: alexandra.stolzing@trm.uni-leipzig.de

oder

Daniela Weber
Translationszentrum für Regenerative Medizin
Universität Leipzig
Philipp-Rosenthal-Straße 55, 04103 Leipzig
E-Mail: presse@trm.uni-leipzig.de

Weitere Informationen finden Sie unter
http://Vollständige Fassung TRMreport_03
http://www.trm.uni-leipzig.de/de/press/trmreport/r-press-a-438.html
http://Translationszentrum für Regenerative Medizin (TRM) Leipzig
http://www.trm.uni-leipzig.de

Das Translationszentrum für Regenerative Medizin (TRM) Leipzig wurde im Oktober 2006 gegründet, um Forschungsergebnisse der regenerativen Medizin zügig in die klinische Anwendung zu überführen. Das Zentrum unterstützt junge Forschungsvorhaben, die Produkte und Verfahren für Diagnostik und Therapie entwickeln und erfolgreich in die klinische Anwendung bringen wollen. Es wird durch das Bundesministerium für Bildung und Forschung, den Freistaat Sachsen und die Universität Leipzig gefördert.

Kontaktdaten zum Absender der Pressemitteilung stehen unter:
http://idw-online.de/de/institution1288

Quelle: Translational Centre for Regenerative Medicine (TRM) Leipzig, Maria Garz, 10.12.2012

*

Quelle:
Informationsdienst Wissenschaft - idw - Pressemitteilung
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 12. Dezember 2012